
Multilayer Networks with Higher-order Interaction Reveal the Impact of Collective 

Behavior on Epidemic Dynamics 

I. Introduction 

In the absence of pharmaceutical interventions, situational awareness and collective adoption of 

protective behaviors are pivotal to combat spreadout of infectious diseases, as demonstrated by the 

ongoing COVID-19 pandemic and the flare-up or resurgent outbreaks around the world. The 

integration of awareness into mathematical models, mainly through variants of susceptible-

infectious-recovered (SIR) models, has been widely investigated since the onset of COVID-19 [1]. 

Most of these models merely capture oversimplified behaviors (e.g., social distancing or not) and 

fail to capture the sophisticated mechanisms underlying behavioral responses, including the 

individual perception of infection risk and bounded rationality, government mandate, 

socioeconomic cost and fatigue on adherence to containment policies, as well as social influence 

[2-5]. The interplay between the collective behavioral response of the population and the contagion 

dynamics has a significant bearing on the epidemic evolution. 

Game-theoretic models explicitly account for behavioral adaptation and the connection with 

epidemic spreading [6], mostly with a separation of time scales between the spreading dynamics 

and behavioral response [7-10]. Inspired by [11], we study the coevolution of the spreading 

dynamics and behavioral adaptation under the same time scale and investigate the decision-making 

process under the influence of risk perception, behavioral change costs, compliance fatigue, social 

influence, as well as bounded rationality [12]. As behavior dynamics has been recognized as one 

driving force behind resurgent outbreaks of COVID-19, there is a pressing demand for a paradigm 

shift from purely rational and reactive behavior modeling to a more comprehensive response 



computational framework that can predict the epidemic evolution and provide guidance on 

intervention policy design. 

Network models have been widely deployed to describe agent interactions. For instance, a single-

layer network was suggested in [13] to incorporate agent behavior to extend the conventional 

susceptible-exposed-infectious-recovered (SEIR) model. The decision of each agent to take a 

certain behavioral response is modeled via an evolutionary game model, considering the 

underlying cost. Ye et al. [11] instead suggested a two-layer network to study the interplay between 

agent behavior from a social layer and the spreading dynamics on a physical layer. Particularly, as 

we have observed during the COVID-19 pandemic, social media play a vital role in reshaping our 

perception towards the risk of infection and in transforming behavioral responses. Nonetheless, in 

most existing works, it is assumed that the infectious population resides in the same physical 

community. It has been reported that contact patterns of residents in one region could be 

substantially affected by the policies and behavioral responses in other distant regions [14]. Or in 

other words, we imitate behavioral responses of our social contacts even if we are located in distant 

communities. Such a “spillover” effect could crimp the effectiveness of intervention policies, and 

it has not been systematically investigated. On the other hand, numerous behavioral models [6], 

[15-16] have been proposed to quantify how human behaviors adapt and affect the transmission of 

contagious diseases assuming pairwise interactions between agents. It is noted, however, that this 

pairwise interaction assumption may fail to represent more realistic behavioral responses [17]. 

Instead, a higher-order interaction among the population has been suggested for behavioral 

adaptation on social networks. Recent studies also underscore that the presence of higher-order 

interactions substantially sways the dynamics of networked systems, from diffusion and 



synchronization to social and evolutionary processes, possibly leading to the emergence of 

sophisticated collective phenomena [17-19].    

To account for such phenomena, we propose a three-layer network platform to study the interplay 

between behavioral response and contagion process in two distant communities. These two 

communities interact via a common social network. A simplicial complex is adopted to model the 

high-order interactions on the social layer, and a game-theoretic model is then utilized to elucidate 

the behavioral change of agents. This theoretic model could help harvest policy-relevant insights 

into the course of contagion spreading dynamics.  

It is noteworthy to highlight that our model is not intended to replicate real curves because we are 

more interested in specific system reactions, such as behavioral responses and changes. Generally, 

most results caused by diverse behaviors are inadequate data to characterize behaviors. If we fully 

focus on the result and ignore the mechanisms underlying these behaviors, the result will no longer 

be precise when the behavioral responses are changed. Currently, most COVID-19 predictions are 

inaccuracy and their prediction curve are too smooth to be true because the practical curves are 

oscillations. Thus, we do not target reproducing real results or curves but focus on analytical 

insights. (For a more in-depth look, you can find the proposed model and numerical findings in 

the appendix.) 

II. Findings and discussion 

In this study, we build a 3-layer network to inspect the interplay between two isolated physical 

communities via a common social-influence layer, and articulate the coevolution of behavioral 

changes of the agents and spreading dynamics of epidemics. A game-theoretic model is developed 

to capture the coupled behavior-disease dynamics, subject to measures that mimic the impact of 

government intervention policy, risk perception, compliance cost, and imitation of social contact’s 



behaviors. To avoid a simplistic pairwise interaction formulation, we employ a framework that 

allows for high-order social interactions in the form of simplicial complexes. Results suggest that 

the simplicial complex setting for the interaction among the agents enhances the risk-averse or 

risk-taking behaviors, depending on the contact’s response to the social influence (see Fig. 5 in 

appendix). Moreover, the conventional SEIR model generally miscalculates the infection case 

count, since the public may possess different perception on the infection risk and adherence to the 

government mandate.  

Furthermore, as social networks are becoming key avenues for information and opinion formation, 

particularly during periods of low physical interactions, behavioral adaptation due to social 

influence has become one critical component to account for in modeling epidemics. This also 

suggests that policymakers should carefully deal with misinformation and disinformation in a 

timely manner. Notably, the flareup or resurgent outbreaks of COVID-19 around the world imply 

that the patchwork intervention policy does not work as anticipated, partially owing to lack of 

compliance and behavior imitation from social contacts who may reside in a remote community. 

Thus, coordinated intervention is anticipated to improve the effectiveness of control and mitigation 

policies. In this sense, our multi-layer network model provides a more sophisticated framework to 

study this phenomenon, and the insight gleaned therefrom can be adopted to guide policy design 

for future pandemics, once the model is properly parameterized—which was not an objective of 

this study.  

            Reference 

[1] D. Wang, M. Small, and Y. Zhao, “Exploring the optimal network topology for spreading 

dynamics,” Phys. Stat. Mech. Its Appl., vol. 564, p. 125535, Feb. 2021, doi: 

10.1016/j.physa.2020.125535. 



[2] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A time-dependent SIR model for covid-

19 with undetectable infected persons,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3279–

3294, 2020, doi: 10.1109/TNSE.2020.3024723. 

[3] G. C. Calafiore, C. Novara, and C. Possieri, “A modified SIR model for the covid-19 

contagion in italy,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, 

pp. 3889–3894. doi: 10.1109/CDC42340.2020.9304142. 

[4] I. Cooper, A. Mondal, and C. G. Antonopoulos, “A SIR model assumption for the spread of 

COVID-19 in different communities,” Chaos Solitons Fractals, vol. 139, p. 110057, Oct. 

2020, doi: 10.1016/j.chaos.2020.110057. 

[5] Z. Liao, P. Lan, Z. Liao, Y. Zhang, and S. Liu, “TW-SIR: time-window based SIR for 

COVID-19 forecasts,” Sci. Rep., vol. 10, no. 1, p. 22454, Dec. 2020, doi: 10.1038/s41598-

020-80007-8. 

[6] A. Rizzo, M. Frasca, and M. Porfiri, “Effect of individual behavior on epidemic spreading in 

activity-driven networks,” Phys. Rev. E, vol. 90, no. 4, p. 042801, Oct. 2014, doi: 

10.1103/PhysRevE.90.042801. 

[7] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, and S. Merler, “Spontaneous behavioural 

changes in response to epidemics,” J. Theor. Biol., vol. 260, no. 1, pp. 31–40, Sep. 2009, doi: 

10.1016/j.jtbi.2009.04.029. 

[8] A. Vespignani, “Modelling dynamical processes in complex socio-technical systems,” Nat. 

Phys., vol. 8, no. 1, Art. no. 1, Jan. 2012, doi: 10.1038/nphys2160. 

[9] I. Belykh, M. Di Bernardo, J. Kurths, and M. Porfiri, “Evolving dynamical networks,” Phys. 

Nonlinear Phenom., vol. 267, pp. 1–6, Jan. 2014, doi: 10.1016/j.physd.2013.10.008. 

[10] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, “Activity driven modeling of 

time varying networks,” Sci. Rep., vol. 2, no. 1, Art. no. 1, Jun. 2012, doi: 10.1038/srep00469. 

[11] M. Ye, L. Zino, A. Rizzo, and M. Cao, “Game-theoretic modeling of collective decision 

making during epidemics,” Phys. Rev. E, vol. 104, no. 2, p. 024314, Aug. 2021, doi: 

10.1103/PhysRevE.104.024314. 

[12] H. A. Simon, “Bounded rationality in social science: Today and tomorrow,” Mind Soc., vol. 

1, no. 1, pp. 25–39, Mar. 2000, doi: 10.1007/BF02512227. 

[13] K. M. A. Kabir and J. Tanimoto, “Evolutionary game theory modelling to represent the 

behavioural dynamics of economic shutdowns and shield immunity in the COVID-19 

pandemic,” R. Soc. Open Sci., vol. 7, no. 9, p. 201095, doi: 10.1098/rsos.201095. 

[14] D. Holtz et al., “Interdependence and the cost of uncoordinated responses to COVID-19,” 

Proc. Natl. Acad. Sci., vol. 117, no. 33, pp. 19837–19843, Aug. 2020, doi: 

10.1073/pnas.2009522117. 

[15] C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between awareness and epidemic 

spreading in multiplex networks,” Phys. Rev. Lett., vol. 111, no. 12, p. 128701, Sep. 2013, 

doi: 10.1103/PhysRevLett.111.128701. 

[16] Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and C. T. Bauch, “Coupled disease–behavior 

dynamics on complex networks: A review,” Phys. Life Rev., vol. 15, pp. 1–29, Dec. 2015, 

doi: 10.1016/j.plrev.2015.07.006. 

[17] I. Iacopini, G. Petri, A. Barrat, and V. Latora, “Simplicial models of social contagion,” Nat. 

Commun., vol. 10, no. 1, p. 2485, Dec. 2019, doi: 10.1038/s41467-019-10431-6. 

[18] D. Guilbeault, J. Becker, and D. Centola, “Complex contagions: a decade in review,” in 

Complex Spreading Phenomena in Social Systems, S. Lehmann and Y.-Y. Ahn, Eds. Cham: 

Springer International Publishing, 2018, pp. 3–25. doi: 10.1007/978-3-319-77332-2_1. 



[19] D. Wang, Y. Zhao, H. Leng, and M. Small, “A social communication model based on 

simplicial complexes,” Phys. Lett. A, vol. 384, no. 35, p. 126895, Dec. 2020, doi: 

10.1016/j.physleta.2020.126895. 
 

 

Appendix 

Model 

We present a multilayer network platform to elucidate how the collective behavior of individual 

agents affects the contagion dynamics on disjoint physical communities. This platform comprises 

two physical layers that represent two isolated communities 𝐴 and 𝐵, on top of which a networked 

SEIR model is implemented to capture the disease spreading dynamics. Here, for simplicity, we 

construct the communities 𝐴  and 𝐵  as Barabási-Albert (BA) networks, since many realistic 

networks follow the preferential attachment principle [1]. The physical networks of communities 

𝐴 and 𝐵 have 𝑁𝑎 and 𝑁𝑏 nodes or agents, respectively. In essence, starting with an initial network 

𝐺0 of 𝑁0 connected nodes, new nodes are attached to 𝑚 < 𝑁0 original ones to form new edges 

according to the preferential attachment principle, i.e., with a probability proportional to the degree 

of existing nodes.  

Agents from both communities 𝐴  and 𝐵  collectively define a social community 𝐶 that 

accommodates social interactions, thus the size 𝑁𝑐 = 𝑁𝑎 + 𝑁𝑏, which indicates that every agent 

cannot travel between two physical communities 𝐴 and 𝐵 (see Fig. 1). These two physical layers 

have time-varying undirected links, which symbolize the physical contacts or the avenue for 

disease transmission [2]. Each agent adjusts their risk-taking or risk-averse behaviors as they parse 

information regarding the global prevalence of the contagion and the response of their neighbors 

on the social layer. Therefore, the two distant communities could still affect each other regarding 



the spreading dynamics indirectly via the social network, even without human mobility in between. 

This mimics how we perceive information from social media and adapt our behaviors accordingly.  

  

We define two utility functions 𝜋𝑎
𝑖  and 𝜋𝑟

𝑖  to characterize the payoff for risk-averse and risk-taking 

behaviors of agent 𝑖, which hinges on the effective intervention policy 𝛿(𝑡), imitation of social 

influence 𝜔𝑖(𝑡), compliance cost 𝜀𝑖(𝑡) (e.g., economic cost, mental stress, and physical fatigue), 

and the community’s risk perception 𝜂(𝑡) [3]. 

                                                         𝜋𝑎
𝑖 (𝑡) = 𝜔𝑖(𝑡) + 𝜂(𝑡) − 𝜀𝑖(𝑡)                                                                    (1a) 

                                                               𝜋𝑟
𝑖 (𝑡) = −𝛿(𝑡) − 𝜔𝑖(𝑡)                                                                           (1b) 

With a large 𝜋𝑎
𝑖 , agent 𝑖 has a strong sense of situational awareness and tends to be risk-averse, 

disregarding the effective intervention policy 𝛿. It is further assumed that conservative agents are 

sensitive to risk perception 𝜂(𝑡) and compliance cost 𝜀𝑖(𝑡), as displayed in Eq. (1a). Conversely, 

a large 𝜋𝑟
𝑖  indicates that agent 𝑖 is risk-prone. The risk-taking agents generally ignore the risk 

Fig. 1 Illustration of the 3-layer network platform as time evolves: the upper/blue layer and lower/orange layer 

represent the two physical contact networks or communities 𝐴 and B; the middle/green layer represents the 

social influence network  



perception 𝜂(𝑡) and compliance cost 𝜀𝑖(𝑡). They instead subject their behaviors to government 

regulations. 𝜔𝑖(𝑡) prescribes the social influence on agent 𝑖 resulting from imitating the behaviors 

of social contacts. Positive 𝜔𝑖(𝑡) indicates imitation of protective behaviors from neighbors, thus 

boosting 𝜋𝑎
𝑖 (𝑡) ; negative 𝜔𝑖(𝑡)  implies imitation of risk-taking responses, elevating 𝜋𝑟

𝑖 (𝑡) . 

Following this, we construct a Markov model to characterize the time-dependent behavioral 

adaption via behavior quotient (BQ) 𝑥𝑖(𝑡 + 1)  of agent 𝑖  at time stamp 𝑡 + 1  with bounded 

rationality assumption: 

                                                                   𝑥𝑖(𝑡 + 1) =
𝑒𝜎𝜋𝑎

𝑖 (𝑡)−𝑒𝜎𝜋𝑟
𝑖 (𝑡)

𝑒𝜎𝜋𝑎
𝑖 (𝑡)+𝑒𝜎𝜋𝑟

𝑖 (𝑡)
 ,                                                                 (2) 

where 𝜎 > 0 is a rational scale in the decision-making process. A finite constant 𝜎 is assumed for 

all agents with bounded rationality. As a side note, the two extreme cases of 𝜎 → ∞ and 𝜎 = 0 

indicate fully rational and fully irrational behaviors, respectively. The BQ 𝑥𝑖(𝑡) ∈ (−1,1) is a 

continuous variable capturing the effective behavioral response of agent 𝑖: if 𝑥𝑖(𝑡) > 0, agent 𝑖 

avoids risk and takes protective behavior; for 𝑥𝑖(𝑡) = 0, agent 𝑖 is risk-neutral; if 𝑥𝑖(𝑡) < 0, risky 

behavior is in favor, which could potentially boost the probability of infection. It is noteworthy 

that the formulation of BQ 𝑥𝑖(𝑡) is a significant departure from the model proposed in [3], in that 

each agent mimics both risk-averse and risk-taking behaviors. The public weighs the trade-off to 

adjust their behavioral response, considering the behavior of their social contacts, risk perception, 

government intervention policy, and compliance cost. 

A. Imitation of social behavior  

On the social influence layer, we define an imitation function 𝜔𝑖(𝑡) to characterize how agent 𝑖 

imitates the behaviors of their social contacts. The simplicial complex has been extensively used 

to reveal such higher-order interactions: the behavioral imitation occurs with nonlinear 



reinforcement characterized by the simplex dimension, rather than bilinearly depending on the 

number of connecting nodes and their behaviors. Formally, a simplex of dimension 𝑑 or 𝑑-simplex 

is a collection of 𝑑 + 1 vertices 𝜎𝑑 = [𝑗0, 𝑗1, … , 𝑗𝑑], and any subset 𝜎𝑑′ (𝑑′ ≤ 𝑑) of 𝜎𝑑  is its sub-

simplex or 𝑑′-face [4]. That said, 𝜎𝑑 subsumes all subset simplices of dimension 𝑑 − 1, and so on 

recursively. The vertices are called 0-simplices, the edges the 1-simplices and the full triangles the 

2-simplices. The collection of simplices and all the sub-simplices or faces defines a simplicial 

complex. As illustrated in Fig. 2 (b), the agent 𝑖 (the orange node) interacts with a set of social 

contacts 𝑗1, 𝑗2 and 𝑗3 via a simplicial 2-simplex, which contains a 1-simplex (e.g., pairwise link of 

[𝑖, 𝑗1]) and a 2-simplex (the full triangle [𝑖, 𝑗2, 𝑗3]). Conversely, Fig. 2 (a) illustrates a simplicial 

1-complex with only the pairwise interactions. The imitation of social behavior, indexed by 𝜔𝑖, is 

induced on the simplicial complex. For computational easiness, we only consider the simplicial 

complex up to dimension 3 in this study.  

  

The enhancement effect for collective interaction of a 𝑑′-simplex is given as 𝜃𝑑′ = (1 + 𝜌𝑑′)𝜆
𝑑′ , 

where 𝜌𝑑′ is the proportion of number counts of 𝑑′-simplices in the simplicial 3-complex. 𝜆𝑑′ =

(a) (b) 

Fig. 2 Illustration of different interactions in the network for agent 𝑖 (the orange): (a) only pairwise 

interactions; (b) simplical 2-complex, including the pairwise and full-triangle interactions; (c) a simplicial 3-

complex with three 3-simplices (red tetrahedron), four 2-simplices (green triangle), and three 1-simplices.   

(c) 



(𝑑′+1
3

) underscores the influence of high-order interactions. 𝜆𝑑′ = 0 for 𝑑′ < 2, 𝜆2 = (2+1
3

) = 1, 

and 𝜆3 = (3+1
3

) = 4. In the illustrative example depicted in Fig. 2 (c), a simplicial 3-complex 

contains three 1-simplices, four 2-simplices, and three 3-simplices, thus 𝜌1 = 𝜌3 =
3

10
, 𝜌2 =

4

10
. 

Correspondingly, the enhancement coefficient for pairwise interaction is fixed as 𝜃1 = 1 with 

𝜆1 = 0. Therefore, the imitation of social behavior function for agent 𝑖 at time 𝑡 can be represented 

as:  

                                                𝜔𝑖(𝑡) = 𝜉
𝜃1 ∑ �̅�𝑣

1𝑛𝑖1
𝑣=1 +𝜃2 ∑ �̅�𝑣

2𝑛𝑖2
𝑣=1 +𝜃3 ∑ �̅�𝑣

3𝑛𝑖3
𝑣=1

𝑛𝑖
 ,                                                            (3) 

where 𝜉 is the imitation factor that scales the influence of imitation behavior in utility functions 

𝜋𝑎
𝑖  and 𝜋𝑟

𝑖 , 𝑛𝑖1 is the number of 1-faces, 𝑛𝑖2 is the number of 2-faces, and 𝑛𝑖3 is the number of 3-

faces associated with agent 𝑖. Variables �̅�𝑣
1, �̅�𝑣

2, and �̅�𝑣
3 represent the average BQ of the 𝑣𝑡ℎface 

with orders 1, 2, and 3 respectively. The 1-face is included not only in the 1-simplex but also in 

the 2-simplex and 3-simplex. Each 1-face contains one neighboring agent for agent 𝑖 with the 

average BQ �̅�𝑣
1(𝑡). Here �̅�𝑣

1(𝑡) = 𝑥𝑗𝑣
(𝑡), 𝑣 = 1, … , 𝑛𝑖1 = 20 as shown in Fig. 2 (c). Similarly, the 

2-face is included not only in the 2-simplex but also in the 3-simplex, and 2-face contains two 

neighboring agents with average BQ �̅�𝑣
2(𝑡). There are thirteen 2-faces for agent 𝑖 in Fig. 2 (c), 

which are �̅�1
2(𝑡) =

𝑥𝑗1(𝑡)+𝑥𝑗2(𝑡)

2
, �̅�2

2(𝑡) =
𝑥𝑗1(𝑡)+𝑥𝑗3(𝑡)

2
, �̅�3

2(𝑡) =
𝑥𝑗2(𝑡)+𝑥𝑗3(𝑡)

2
, �̅�4

2(𝑡) =
𝑥𝑗4(𝑡)+𝑥𝑗5

(𝑡)

2
, 

�̅�5
2(𝑡) =

𝑥𝑗8(𝑡)+𝑥𝑗9(𝑡)

2
, �̅�6

2(𝑡) =
𝑥𝑗11(𝑡)+𝑥𝑗12(𝑡)

2
, �̅�7

2(𝑡) =
𝑥𝑗11(𝑡)+𝑥𝑗13(𝑡)

2
, �̅�8

2(𝑡) =
𝑥𝑗12 (𝑡)+𝑥𝑗13(𝑡)

2
, 

�̅�9
2(𝑡) =

𝑥𝑗14(𝑡)+𝑥𝑗15
(𝑡)

2
, �̅�10

2 (𝑡) =
𝑥𝑗16(𝑡)+𝑥𝑗17(𝑡)

2
, �̅�11

2 (𝑡) =
𝑥𝑗16(𝑡)+𝑥𝑗18(𝑡)

2
, �̅�12

2 (𝑡) =
𝑥𝑗17(𝑡)+𝑥𝑗18(𝑡)

2
, 

and �̅�13
2 (𝑡) =

𝑥𝑗19(𝑡)+𝑥𝑗20(𝑡)

2
. Lastly, the 3-face is only included in the 3-simplex, and there are three 



3-faces in the illustrative example in Fig. 2 (c). The average BQ �̅�1
3(𝑡) =

𝑥𝑗1
(𝑡)+𝑥𝑗2

(𝑡)+𝑥𝑗3
(𝑡)

3
, 

�̅�2
3(𝑡) =

𝑥𝑗11
(𝑡)+𝑥𝑗12

(𝑡)+𝑥𝑗13(𝑡)

3
, and �̅�3

3(𝑡) =
𝑥𝑗16

(𝑡)+𝑥𝑗17
(𝑡)+𝑥𝑗18

(𝑡)

3
. 

B. Risk perception  

The risk perception reflects how the public perceives the disease prevalence 𝑧, the fraction of the 

population that is infected (exposed and infectious) [5]. A power function for risk perception, 

𝑧(𝑡) ∈ [0,1], has been suggested in [3]: 

                                                                                 𝜂(𝑡) = 𝑘𝑧(𝑡)𝑢,                                                                          (4) 

where 𝑘 > 0 is the scaling factor and the risk index 𝑢 > 0 captures the population attitude towards 

the prevalence or the risk. Since 𝑧 ∈ (0, 1), 𝑢 > 1 indicates that the population discounts the 

infection risk, and 𝑢 < 1 implies that the public tends to overrate the underlying risk. 

C. Government intervention policies 

To contain the spreading of infection, the government enacts non-pharmaceutical interventions, 

such as social distancing, face mask requirement, and lockdowns. 𝑝(𝑡) > 0 quantifies the strength 

of such policies at time 𝑡, and the policy is adjusted periodically (e.g., every 10 time steps) for 

each community according to the average prevalence 𝑧̅(𝑡∗) of the previous time interval 𝑇 ∈ [𝑡∗ −

10, 𝑡∗ − 1], where 𝑡∗ = 10 × ⌊
𝑡

10
⌋ and ⌊∙⌋ is a floor function. Remarkably, public compliance with 

social restrictions diminishes as fatigue sets in. To account for the “lockdown fatigue”, a fatigue 

function 𝜓(𝑡) = 𝑒
−(

𝑡

𝜇
)

 is introduced to portray the diminishing public compliance to the 

intervention policy as time elapses, regulated by the complying factor 𝜇 . Thus, the effective 

intervention policy 𝛿 is given as:  

                                                                              𝛿(𝑡) = 𝜓(𝑡)𝑝(𝑡) ,                                                                 (5a) 



                                                          𝑝(𝑡) = {

0.8,  𝑧̅(𝑡∗) > 0.1
0.5, 0.05 ≤ 𝑧̅(𝑡∗) ≤ 0.1

0.3,
0.0,

0.03 ≤ 𝑧̅(𝑡∗) < 0.1 
𝑧̅(𝑡∗) < 0.03

,                                       (5b) 

Here, the values of 𝑝(𝑡) are set arbitrarily, and we do not seek to find the optimal intervention 

policy. Different evolution trajectory of the infection of the two different communities causes 

different intervention policies 𝑝(𝑡), as shown in Eq. 5 (b). We name this as an adjustable policy, 

in comparison to the rigid policy to be discussed in section Numerical result.  

D. Compliance cost 

Studies on historical contagion indicates that adherence to government mandate is crucial to 

slowing the spread of the pandemic [6]. The compliance cost 𝜀𝑖(𝑡) symbolizes the cost of abiding 

by government policies, and it hinders the agent from taking protective behaviors (e.g., shelter-at-

home and wearing face masks). The compliance cost 𝜀𝑖(𝑡)  comprises two components: the 

immediate cost 𝑐 ≥ 0, e.g., basic sanitization cost and psychological frustration, and cumulative 

protective cost.  

                                                   𝜀𝑖(𝑡) = 𝑐 + ∑ 𝑎𝑡−𝜏𝑡
𝜏=1 (𝜑[𝑥𝑖(𝜏) − 0.2]+)                                                      (6) 

𝑎 ∈ [0, 1] is the cumulative factor representing how the past protective behaviors affect the current 

compliance cost. As agents respond to the infection in a different way, the cumulative cost hinges 

on each BQ 𝑥(𝑡). 𝑎 = 0 implies a memoryless protective cost structure, such that the protective 

action course in the history does not affect the current compliance cost. Cost scaling 𝜑 indicates 

the cost associated with the protective behaviors. [𝑥𝑖(𝜏) − 0.2]+ = max (0, 𝑥𝑖(𝜏) − 0.2) 

represents that the BQ less than 0.2 will not incur a cost at time 𝜏.  



E. Transition probability  

On the two physical contact layers (communities 𝐴 and 𝐵), each agent 𝑖 is in one of 4 possible 

states ℎ𝑖(𝑡) = {𝑆, 𝐸, 𝐼, 𝑅} at any time  𝑡. The infectious (I) spreads the disease to their susceptible 

(S) neighbors, who then become exposed (E) with a probability 𝑃(ℎ𝑖(𝑡 + 1) = 𝐸|ℎ𝑖(𝑡) = 𝑆): 

                                𝑃(ℎ𝑖(𝑡 + 1) = 𝐸|ℎ𝑖(𝑡) = 𝑆) =
1−𝑥𝑖(𝑡)

2
× (1 − (1 − 𝛽)𝑁𝑖(𝑡)),                                   (7) 

where 𝛽 is the infection rate when the susceptible agent 𝑖 contacts infectious neighbors. 𝑁𝑖(𝑡) is 

the number of infectious neighbors for agent 𝑖 at time 𝑡, and it is time-varying because of the 

change of agents’ states. The expression 
1−𝑥𝑖(𝑡)

2
∈ (0,1)  symbolizes the effective disease 

transmission, citing variation of BQ 𝑥𝑖(𝑡). When 𝑥𝑖(𝑡) = 1, agent 𝑖 refrains from taking any risk, 

and 𝑥𝑖(𝑡) = −1  implies that agent 𝑖  completely ignores the infection risk. The exposed (E) 

transitions to the infectious (I) with a probability 𝑃(ℎ𝑖(𝑡) = 𝐼|ℎ𝑖(𝑡𝐸) = 𝐸):  

                                              𝑃(ℎ𝑖(𝑡) = 𝐼|ℎ𝑖(𝑡𝐸) = 𝐸) = 1 − 𝑒−𝛼(𝑡−𝑡𝐸),                                                         (8) 

where 𝑡𝐸 is the time at which agent 𝑖 became exposed (E). This transition occurs at an exponential 

rate 𝛼, or equivalently with an average latent period of 1 𝛼⁄ . In a similar vein, the infectious (I) 

recovers with a probability 𝑃(ℎ𝑖(𝑡) = 𝑅|ℎ𝑖(𝑡𝐼) = 𝐼):   

                                               𝑃(ℎ𝑖(𝑡) = 𝑅|ℎ𝑖(𝑡𝐼) = 𝐼) = 1 − 𝑒−𝛾(𝑡−𝑡𝐼),                                                         (9) 

where 𝑡𝐼 is the time at which agent 𝑖 becomes infectious (I). The recovery process occurs at an 

exponential rate 𝛾, or equivalently with an average recovery period of 1 𝛾⁄ . 

Numerical results 

We utilize the Facebook social network dataset from Network Repository (NR) [7] for the social 

influence layer, which includes 10004 individual Facebook users or nodes. We construct a 

simplicial 3-complex for each agent at each time 𝑡 by randomly selecting a different number of 



neighbors (from 1 to 3) to formulate different order simplices. We generate an Erdös-Rényi (ER) 

random network as the initial network 𝐺0  with size 𝑁0 = 1000  and the probability of node 

connection 𝐶0 = 0.1  to construct two BA networks to represent the communities 𝐴  (the first 

physical contact layer in our multilayer network) and 𝐵 (the second physical contact layer) of equal 

size 𝑁𝑎 = 𝑁𝑏 = 5002  but with disparate density of links. The densely connected network 

symbolizes the urban area, denoted as community 𝐴: each of the new coming nodes will connect 

to 𝑚𝑎 = 250 nodes to extend the initial network. The sparsely connected network is analogous to 

the rural area, denoted as community 𝐵: each new coming node will be connected to only 𝑚𝑏 =

50 existing nodes. The connectivity of these two BA networks represents the maximal physical 

contacts for each agent throughout the epidemic process. As time evolves, a random set of edges 

from this connectivity will be chosen for each agent to form the time-varying network. This does 

not preclude other temporal formation mechanisms [3]. We stress that whereas some epidemic 

models can reproduce key features of the spreading dynamics, the abundance of mutually 

incompatible models suggest that there is still substantial uncertainty in data collection and model 

parameterization, as well as a lack of fundamental understanding of the observed spatiotemporal 

dynamics [8]. Thus, we do not aim to replicate the infection curve in any particular regions. Rather, 

we parameterize the model to reveal the general impact of the social interplay on the infection 

dynamics.    

We implement the SEIR compartment model previously described on the two physical layers (the 

communities 𝐴 and 𝐵), which possess the same key parameters for the COVID-19 pandemic, 

including the transmission probability per contact 𝛽, the incubation rate 𝛼, and the recovery rate 

𝛾. According to recent studies of COVID-19 [49-50], we set 𝛽 = 0.06, 𝛼 = 1/7 and 𝛾 = 1/21. 

That is to said, we set the incubation period to 7 days and the recovery time to 21 days. To start 



with, we randomly assign a 1% of the population for communities 𝐴 and 𝐵  to the infectious 

compartment, and initialize the BQ 𝑥(0) = 0 and the effective intervention policy 𝛿(0) = 0 for 

all agents. Disregarding the social influence and behavioral response, the contagion dynamics for 

the densely-connected urban community 𝐴  and the sparsely-connected rural community 𝐵 

regulated by the conventional SEIR are showcased in Fig. 3: community 𝐴 reaches a higher peak 

infection rate with an earlier arrival time. Nonetheless, there is a far cry between the reality and 

those curves in Fig. 3: ebbs and flows of COVID-19 case count have been reported globally, and 

multiple resurgent outbreaks are also observed in the U.S.  

 

A. Spreading dynamics under different risk perceptions  

We set the model parameters on the social layer so as to have immediate cost 𝑐 = 0.1 , 

accumulative factor 𝑎 = 0.4, cost scaling 𝜑 = 0.7, imitation factor 𝜉 = 0.2, rational rate 𝜎 = 10, 

and complying factor 𝜇 = 50. We initialize the BQ 𝑥(0) = 0 for all agents on the social layer, i.e., 

they are all risk neutral at the onset of infection. We also assume a scaling factor 𝑘 = 2 and risk 

index 𝑢 = 0.5 for a high level of situational awareness of the infection. In this scenario, the public 

tends to take risk-averse behaviors in line with the prevalence rate, and the compartment flow 

(b) (a) 

Fig. 3 Population fraction of each compartment under the conventional network SEIR model for (a) 

communities 𝐴 and (b) community 𝐵, respectively.  



dynamics are shown in Fig. 4 (a) and (b) for communities 𝐴 and 𝐵, respectively. Compared to the 

conventional SEIR model, the infectious compartment exhibits oscillatory patterns, and a much 

lower peak infectious fraction is observed. Conversely, 𝑘 = 0.5 and 𝑢 = 4 are used for a low level 

of risk awareness. Hence, the public tends to take risky behaviors, resulting in marked increase of 

the infectious population, as shown in Fig. 4 (c) and (d). Numerically, such risky behaviors lead 

to BQ 𝑥 → −1 or 
1−𝑥𝑖(𝑡)

2
→ 1 for most agents at the earlier stage of the contagion. According to 

Eq. (7), our model is approximately equivalent to the conventional SEIR model in this condition, 

particularly the first 10 time steps before triggering the intervention policy. Next, the non-

pharmaceutical intervention is enacted to suppress the spread of contagion. For community 𝐴 with 

high population density, the adjustable intervention is not sufficiently intense to contain the disease 

spread when the public is averse to safeguard measures, which is distinguishable from the infection 

curves in Fig. 3 (a) and Fig. 4 (c). For community B, the susceptible levels off rapidly after the 

policy is enacted, which represents a significant departure from the curve in Fig. 3 (b). 

 



    

At the onset of the pandemic, the prevalence 𝑧(𝑡) edges up rapidly. When the public possesses 

high risk aversion (with 𝑘 = 2 and 𝑢 = 0.5), the risk perception 𝜂 increases at a faster pace than 

the compliance cost 𝜀𝑖, promoting risk-averse behaviors (see Eq. 1 (a)). The imitation of social 

behaviors further elevates the population BQ, eventually bending the infection curve. The 

counterbalance between the constituent components of the utility functions is manifested as the 

spikes on the prevalence curves in Fig. 5 (a) and (b). When the public generally ignores the 

infection risk with 𝑘 = 0.5 and 𝑢 = 4, the compliance cost 𝜀𝑖 dominates the utility function. The 

behavior imitation further enhances such risk-prone behaviors. Overall, at this extreme risk 

ignorance, all agents behave without considering the infection, thus the prevalence is fairly similar 

(a) (b) 

Fig. 4 Population fraction of each compartment under the proposed game-theoretic network SEIR model for 

(a) community 𝐴 and (b) community 𝐵 with risk-averse behavioral response, and (c) community 𝐴 and (d) 

community 𝐵 with risk-taking behavioral response.  

(c) (d) 



to the conventional SEIR model without behavioral response (see Fig. 5 (c) and (d)). We also note 

that with high-order interactions between agents, the imitation of social behaviors captures the 

reinforcement effect. As displayed in Fig. 5 (a) and (b), when the population is on high alert, the 

prevalence rate curves exhibit a lower peak for both communities 𝐴 and 𝐵 under the simplicial 

complex framework compared to the pairwise interaction. At the low risk perception level, the 

reinforcement of risky responses leads to elevated peaks for communities 𝐴 and 𝐵, though the 

difference is not substantial as illustrated in Fig. 5 (c) and (d).  

  

B. The influence of control policy 

We conduct another set of simulations to investigate how the control policy in one community 

affects the other indirectly via the social layer, with 2 levels of intensity, namely, weak 𝛿(𝑡) = 0.1 

(c) 

(b) (a) 

Fig. 5 The prevalence rate 𝑧(𝑡) from the game-theoretic network SEIR for the two communities with (a) 

pairwise and (b) high-order interactions on the social influence layer under risk-averse behavioral response, 

and with (c) pairwise and (d) high-order interactions on the social influence layer under risk-taking response. 

(d) 



and strict 𝛿(𝑡) = 1.0 for all time 𝑡, instead of the adjustable control policies given in Eq. (5). Here, 

we only consider the risk averse scenario. First, we apply a strict control policy to community 𝐴 

and maintain the adjustable policy in line with the prevalence rate for community 𝐵. As shown in 

Fig. 6 (a), the bold action against the infection significantly suppresses the prevalence rate for 

community 𝐴, compared to the adjustable policy in Fig. 5 (b). Such a strict policy substantially 

subdues the utility for risky behaviors, thus promoting conservative responses. Simultaneously, 

agents in community 𝐵 imitates the behavior of their social contacts, resulting in fluctuation of the 

prevalence. As time evolves, with the strict government mandate in place, more and more agents 

adopt the risk-averse responses, and the prevalence in community B also settles at a low level. 

Next, we impose a strict control policy on community 𝐵 and maintain the adjustable policy for 

community 𝐴. As shown in Fig. 6 (b), the strict policy suppresses the prevalence for community 

𝐵 and agents in community 𝐴 imitate the protective behaviors in community 𝐵 to also diminish 

their prevalence as compared to the scenario of adjustable policies for both communities in Fig. 5 

(b).  



 

Subsequently, a weak control policy is enacted for one community and an adjustable policy is 

maintained for another one. As illustrated in Fig. 6 (c) and (d), overall, as the population is risk 

averse, the weak control policy has only a modest impact on agent behaviors and the prevalence 

of both communities. Compared to Fig. 5 (b), the prevalence in community 𝐴 with weak control 

policy (see Fig. 6 (c)) is slightly decreased in the first 10 time steps, because the adjustable policy 

is inactive. Likewise, a weak control policy is also imposed on community 𝐵 leading to a slightly 

smaller prevalence in community 𝐵. It is further noted that the strength of the weak control policy 

(𝛿(𝑡) = 0.1) is lower than the active adjustable policy (𝛿(𝑡) ≥ 0.3) in community 𝐴 but higher 

than the inactive adjustable policy (𝛿(𝑡) = 0.0) in community 𝐵, as given by the average disease 

(c) (d) 

(b) (a) 

Fig. 6 The prevalence rate 𝑧(𝑡) from the game-theoretic network SEIR for the two communities with different 

levels of control policies: (a) strict control policy 𝛿(𝑡) = 1.0 for community 𝐴; (b) strict control policy 

𝛿(𝑡) = 1.0 for community 𝐵; (c) weak control policy 𝛿(𝑡) = 0.1 for community 𝐴; (d) weak control policy 

𝛿(𝑡) = 0.1 for community 𝐵. 



prevalence in both Fig. 6 (c) and (d). Therefore, the overall prevalence in community 𝐴 with a 

weak control policy is higher than the adjustable policy but the overall prevalence rate in 

community 𝐵 with a weak control policy is lower than the adjustable policy.  

Based on the results of Fig. 6, we conclude that the control policy for one community can have a 

significant influence on another community due to the imitation of social behavior 𝜔. Thus, it 

appears that to reduce the prevalence of the pandemic fast, the best way is to impose a strict control 

policy on the denser population. Conversely, imposing a strict control policy on a lowly dense 

population community cannot halt the pandemic fast. 
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